If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-180=0
a = 2; b = 10; c = -180;
Δ = b2-4ac
Δ = 102-4·2·(-180)
Δ = 1540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1540}=\sqrt{4*385}=\sqrt{4}*\sqrt{385}=2\sqrt{385}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{385}}{2*2}=\frac{-10-2\sqrt{385}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{385}}{2*2}=\frac{-10+2\sqrt{385}}{4} $
| 8(5x-3)=35x+16 | | 1/5x+13=18 | | 13x-5=+19 | | C(x)=0.95x+35 | | 13x+8=4x-10 | | 8x=11x+45 | | 24=n-(-4) | | e=160 | | 11x-6=-28 | | a-2/3=3/4 | | 5x-8+7x-4=180 | | g-(-13)=-7 | | 12p+7-3p=9-2+11+3+4 | | 4/x+2=3x+8/4 | | ^3=18+3x | | 1500+0.4x=1700+0.2x | | 160π=250π−10πr^2 | | 8x-x+1=50 | | p−15=30 | | 4d-10d=-30 | | 2x-10+5x=-21+-28x | | 14x^2-59x+18=0 | | x-72=136-x | | 6c-30=24 | | 5x-8=7x-4 | | 7(5+5x)=-105 | | 8j=4(2j+6) | | 6t+1/9t-4=2t+5/3t-4 | | 2x-131=58-7x | | -2x=-6x-20 | | -9x+7+11x=17 | | 6x-107=-3x+163 |